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Chapter 1

Introduction

The initial objective of this thesis has been to discuss methods of statistical
inference in demographic models by the use of generalised linear models.
Confidence intervals are important for the evaluation of the goodness of an
estimation. When dealing with estimators for mean response functions in
univariate linear models, the confidence intervals about the point estimates
of the function form a band-shaped region. Despite its shape, this band
reflects only the confidence that the mean response function is locally cov-
ered by the confidence interval for one point estimate. It is often useful to
know a band which covers the whole mean response function with a given
probability. Such bands are called simultaneous confidence bands. In higher
dimensions, it is adequate to speak of confidence regions.

By using the so-called tube approach, Sun and Loader (1994) devise a modern
construction method for simultaneous confidence bands in linear regression.
The tube approach reduces the problem of coverage probability of the mean
response function to the calculation of volumes of tubes embedded in unit
spheres, and paves the way to an easily evaluable approximation formula.
According to Loader et al. (2000), it can also be applied to generalised linear
models.

The thesis comprises three main parts, coinciding with Chapters 2, 3 and 4.

Chapter 2 explains in detail what simultaneous confidence bands are, and
guides the reader through the steps from their intuitive definition to their
representation as tubes on a sphere. It is shown that the tube approach
creates conservative confidence bands in univariate normal linear regression.
A proof is provided for the exactness of one-sided confidence bands with the
tube approach, a result which does not appear in (Sun and Loader, 1994).
Further results are cited. A justification is given for the application of the
tube approach to weighted linear regression and a two-dimensional predictor
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space, thus preparing the procedure for the application to generalised linear
models. Some example plots of simultaneous confidence bands are provided.

Chapter 3 introduces a special generalised linear model motivated by the
Heligman & Pollard mortality model for ages above 50. Following the ideas
of Loader et al. (2000), it is shown that the tube approach can be used in
generalised linear models by applying it to the linear predictor. Considering
the Heligman & Pollard model as an example, the necessary modifications are
carried out. The adequacy of the tube formula for generalised linear models
is discussed with special attention to the skewness of the error distribution.

Simulations were used to demonstrate how the coverage of the confidence
bands behaves for the models studied in theory. Chapter 4 provides their
results.



Chapter 2

Simultaneous Confidence
Bands and Regions in Linear
Regression

2.1 Simultaneous Confidence Bands in
Unweighted Linear Regression

2.1.1 The model

We consider a linear regression framework with d = 1 covariate. We observe
pairs (x;,Y;), i = 1,...,m, of fixed effects and responses. Depending on the
covariate level the responses are normally distributed around an unknown
linear function

f(z) = Bo + .
The model is

Yi=0o+ bixi+ei, i=1,...,m, (2.1)
with independent and identically distributed errors
gi~N(0,0%), i=1,...,m, (2.2)

following a normal distribution with mean 0 and variance o2. As a result, the
Y; are also independent and are distributed according to a normal distribution

Y;'NN(ﬂU—F/lei,Oj), 221,,m

We can represent the errors as the difference of the random variables Y; and
the mean response function f(z) by

SiZY;—f(I,EZ'), 2:1,,m

5
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The smallest interval that covers all covariate levels will be called the
predictor space X. Without loss of generality, we can assume that

1 < ... < Ty,

T
X — ( 1.1 )
1 ... Ty
is the design matrix and Y = (Y3,...,Y},) is the response vector. We will
call 3y and B, the true parameters, B = (fo, 51)%.

We assume that the matrix (X7 X)™' X7 € (2 x m) has rank 2. As shown
in Appendix A, the maximum likelihood estimator

and hence X' = [z1, x,,].

B=(X"X)'X"Y (2.3)

of B coincides with the least squares estimator and is unbiased.

2.1.2 Simultaneous confidence constants and bands

On the predictor space X we define a linear function

I(z) = X(XTX) '(1,2)7 € M(m x 1). (2.4)

Remark 1. The function l : X — R™ s linear, because X (XTX) ! =
(aij) is an m X 2 matriz with rows a; = (ayj, ..., am;)%, j = 1,2, and thereby

l(z) = a; + za,.

We have demanded that the rank of (XTX) ' XT be 2, which is equivalent
to the linear independence of a, and as.

The function I allows us to use a simple notation for the estimator, which
— according to the Gauss-Markov theorem (see Gruber, 1998) — is the best
linear unbiased estimator for f(x):

flz) = BU“’BI«T: (L«T)B

(1,2)(XTX)"'XTYy
= 1(2)"Y = (I(2),Y). (2.5)
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Its unbiasedness follows from the unbiasedness of the parameter estimators
Bo and f;: K R R

Using this result and the linearity property of the expectation, we can rep-
resent the mean response function as the scalar product of I(z) and p =

(f(z1),..., f(zm))T, the vector of f evaluated at the m covariate levels:
f(z) = Ef(r) =E(),Y)
= (l(z),EY) = (l(x), p). (2.7)

Form of the confidence bands

The responses in our model are independent. With the basic calculation
rules of the variance for linear functions of independent random variables we
determine the variance of the estimator f(z).

Vi) = V@), Y)=3 V(@)Y

= D B@V) =0 l@)li(x)

= o2(1(2),1(x)
= ).

A reasonable two-sided symmetrical confidence interval for f(z) for v € X
will have width proportional to the standard deviation o||l(z)|| of its estima-
tor, i.e. it will take the form

(f (@) = colll(z)|l, f(x) + colll(z)]])
for a suitable constant c¢. For the well-known pointwise 1 — « confidence
intervals in a normal linear setting, the constant is ¢, = ®~'(1 — a/2), as
found in (Liese, 2003).
Sometimes it is useful to have one-sided confidence intervals. For example, a
lower confidence interval for f(z) has the form

(f(x) = coli(x)], 00).

For the construction of simultaneous confidence bands for f over the interval
X these structures are going to be used, too. The vital differences are the
treatment of the union of confidence intervals as one confidence band, and
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the value of the confidence constant ¢. These will be introduced in the fol-
lowing paragraphs.

Simultaneity

In order to define one-sided and two-sided simultaneous confidence bands it
seems appropriate to first define the simultaneous confidence constants by
the requirements of simultaneous coverage which the band must meet.

The structure of the errors is symmetrical. Without loss of generality we will
therefore consider just lower one-sided confidence constants and bands.

Definition 2.1 (simultaneous confidence constant). For the linear re-
gression setting as discussed above, ¢ is called a two-sided simultaneous con-
fidence constant to the level 1 — a : <=

P (V:E eX:|f(x)— fz)| < ca||l(x)||) =1—-a. (2.8)

The constant ¢ is called a lower simultaneous confidence constant to the level
l—a:<—

P (vz X f(a)— fla) < ca||l(x)||) —1-a (2.9)

Remark 2. As opposed to the definition (2.8), the constant c, for pointwise
two-sided confidence bands fulfils the equation

VoeX:P (|f(x) — @) < cpa||l(z)||> ~1-a. (2.10)

Since the coverage probability increases monotonously in ¢, and since for any
c>0,x0€ X

P(vaex:|f(@) = f@) < coll@]l) < P (1f(w0) = f(wo)] < collt(wo)l])

the simultaneous confidence constant will be at least as large as the constant
for the pointwise confidence intervals.

Definition 2.2 (simultaneous confidence band (SCB)). The set

{ww) 2 e ue|[f@)—coll@]. f@) +coli@l] ) @11)

is called a two-sided simultaneous confidence band on X to the confidence
level 1 — « : <= c is the corresponding two-sided simultaneous confidence
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constant.
The set .
{(x,u) re X, ue |fx) - coll(@)], +oo)} (2.12)

is called a lower simultaneous confidence band on X to the confidence level
1 — «a: <= cis the corresponding lower simultaneous confidence constant.

In both cases, 1 — a is the probability that for all z € X the whole true
regression line is covered by the confidence band. Hence, 1 — « is called the
coverage probability, whereas « is called the non-coverage probability.

Intuitively speaking, a pointwise confidence band is just a set of confi-
dence intervals. A simultaneous confidence band focuses on the whole line.

The procedure of determining the confidence constant

To calculate the value of ¢ we use a geometrical approach, which will lead us
through the following steps:

1 We transform the probability in equations (2.8) and (2.9) such that they
assume a geometrical meaning, giving rise to the tube approach.

2 We derive formulae for the non-coverage probability a depending on c.

3  We solve the appropriate formula for c.

2.1.3 Preparation for the tube approach

The following calculations are very similar for lower and two-sided confidence
constants. We will reproduce the steps for the two-sided case and give the
results for the (easier) one-sided case.
We start by considering the inequality

|f(2) = f(2)] < collU(x)]] (2.13)

in the definition (2.8) of the two-sided simultaneous confidence constant.
If we use the representations from (2.5) and (2.7), the inequality may be
transformed as follows.

@) = f@)] < eolitx)]
(@), ) = {U(2), Y)| < cofl(z)]]
({I(z), €)] < coll(x)], (2.14)
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because ¢; = Y; — f(z;) = Y; — p;. Both vectors

1 1
T(z) = T A(z)and U = — - €, (2.15)

have unit length.
After dividing by ||e|| and ||I(z)|], (2.14) becomes

co

(T (z),U)] Tel

which we substitute into (2.8) to obtain a different characterisation of the
two-sided simultaneous confidence constant,

l—a = P(VzeX:|(T(z),U)|e] < co)

= 7 (sup (7). 0 el < ).

or, even simpler:

a=P (sup (T'(z),U)| |le|| > ca) . (2.16)
zeX
Analogously, equation (2.9) can be written
a=P (Sup(T(:E), U)le| > ca) . (2.17)
zeX

Remark 3. Because of the linear independence of a1 and ay (Remark 1),
|L(z)|| is always positive, and the function

” ‘<||§Eg||’U>‘ =[(T(@).U)

18 continuous. Thus we can confine the search for the supremum
sup,ex [(T'(2),U)| to X' = X N Q (the intersection of the predictor space
and the rational numbers), and the following two assertions hold:

(a) sup {T'(z), U)| = sup [(T(x), U)|.

(b) Since a supremum over a countable set of random variables is a random
variable (see Krylov, 1995),

H = sup [(T(x),U)|

zeX!

18 a random variable.
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The quotients &;/0 ~ N(0,1), i = 1,...,m, of the errors and the variance
follow a standard normal distribution. That is why the sum

1 1 1
§||€||2 = ;5% to Tt ggfn

follows a x?-distribution with m degrees of freedom (see Borovkov, 1998)
with probability density function

1 /21 e/

fre(r) = I{x>0}($)m

The distribution of the positive square root o !||e|| of o7 2||e||* has a cumu-
lative density function of

F.

Xm

(@) = Pl el <2)=Po~*|e||” < 2%)

- [

m/2-1,-y/2
/ 2m/2r m/2 om2T(mj2)” ¢ Y

m 1 —y2/2
= || w
which characterises a y distribution with m degrees of freedom. The vectors
le]| and U are stochastically independent. For a proof of this result see
Corollary 2.6.
In Remark 3 the restriction on the countable set X' is justified and the
random variable H is defined. As a function of U, H is also independent
from ||e||. Let ¢(h,7) = I(c00)(h - 7). Then we can express the non-coverage
probability (2.16) as the expected value

P(H-o'le]>c) = Ep(H. o 'el).

which in turn equals the integral

/ (hy 1) P (dh, dy) = / / 2) P(dh) Py (dv).

of the function ¢ with respect to the joint distribution Py,,, = Py - P,,, of

the two random variables. This factorisation of the distribution characterises
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independent random variables (see Bauer, 2002). It turns out that
@ = [ [ e tt-2) Pt Py, (a0

— [ Pty> 0P, (@

- /P <H > %) Py, (d7)

— / P (fél}?f (T(z),U)| > %) Py, (dv)

_ !p(iggwr(x),wl >

For v < ¢ the event
fsup iz, o) > £
tex Y
is impossible, because the scalar product of unit length vectors is < 1,
whereas ¢y~! > 1. Thus, instead of a lower integral limit of 0, we can
write c.
In the same manner we can derive a formula for the one-sided case. It is

o= /Oo P(sup@@.0) > £ ) 0 (219)

2.1.4 Geometrical meaning: on the sphere

The following paragraphs prove some assertions made above and explain
why and how the calculation of the confidence constant can be reduced to
calculating volumes of tubes.

One important concept is the uniform distribution on the unit sphere.

Definition 2.3 (unit sphere in R™). The set

Sm-1={r € R™ : ||z|]| = 1} (2.20)
is called the ((m — 1)-dimensional) unit sphere in R™.
Definition 2.4 (uniform distribution on S,,_;). A random vector X =

(X1,..., X;n)T is said to be uniformly distributed on the unit sphere S,,_;
: <= ||X|| =1 and for any orthogonal matrix O € O(m)

LOX) = L(X).
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Figure 2.1: Situation in R®: The path M and its negative twin —M.

The following theorem is based on Chapter 1.5 from (Muirhead, 1982).

Theorem 2.5. If X ~ N(0, I,,) has an m-variate standard normal distri-
bution and

R=|X|,U=UX)=|X|"'X, (2.21)
then X can be expressed as X = RU, where
(1) U and R are independent,
(2) U is uniformly distributed on the unit sphere Sp,_1, and
(8) R? follows a x* distribution with m degrees of freedom.

Proof. The third assertion is evident from the characterisation of a x? ran-
dom variable as the sum of the squares of m normal random variables (see
page 11).

To prove the second assertion, we take an arbitrary orthogonal matrix O &€
O(m) and consider the equation

U(OX)=|0X|7'0X = || X]T'OX = OU (X). (2.22)

A basic result on the multivariate normal distribution is that, for any m x m
matrix A and for any normal vector X ~ N(u,X), the random vector AX is
also normally distributed with mean vector Ay and covariance matrix AL AT
(see, for example, Port, 1994). Remembering that X ~ N(O, I,;,), it is clear
that the distribution of the random vector OX is normal with mean vector
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00 = 0 and covariance matrix OI,,0T7 = 00T = OO0~ = I,,,.
Hence, OX ~ N(0, I,,) and
L(OX) = L(X).
In conjunction with (2.22) this result yields
L(OU (X)) = L(U(X)).

Since O was an arbitrarily chosen orthogonal matrix, U is (by definition)
uniformly distributed on the unit sphere S,,_;.

The independence of R and U can easily be seen from the density fx of
X = (Xy,...,X,,) in spherical polar coordinates. Let us therefore consider
the transformation to spherical polar coordinates

& = rsinfysinf,...sinf,, _3sinf,, _5sinf,, ;
& = rsinfysinb,...sinfb,,_3sinf,_ocosb,,_;
& = rsinfysinf,...sinf,, _3cosb,, -
&4 = rsinfysinf,...cosb,_3
Eno1 = rsinfycosfy
En = rcosby,

where r > 0,6; € (0,7] fori = 1,...,m — 2, and 6,1 € (0,2xw]. The
Jacobian determinant of this transformation is

J(& = (r,0)) = rm=lsin™ 26, sin™ 36, ...sin’ 0,2,

the proof of which can be found in (Muirhead, 1982). So the transformed
joint density function is

fro(r,01,...,0,) (2.23)

= fX(g(r’ 01, . 70m))<](£ — (Ta 0))

1

L, 1 :om—2 - m—3 -1
= —— - m mT=0 m=ol, ... 0,2,
Brymlgm exp { 2021" } T sin 1 8in 5. ..sin 9

with each variable in a different factor. Thus the random variables
Raala . '70m71

are totally independent, which implies that R and U are also independent.
O
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Apart from the distribution of the random variable R, this theorem is
also valid for any spherical distribution other than the normal distribution.
Instinctively it is clear that our approach works just as well if the error vector
is independent and follows any other spherical distribution. This is true only
in so far as the multivariate normal distribution is the only independent
spherical distribution, as pointed out by Muirhead (1982).

Corollary 2.6. The random vector U as defined in (2.15) is uniformly dis-
tributed on the unit sphere and independent from | e||.

Proof. Set X = o0~ 'e in Theorem 2.5. Then the theorem states that U =
|le||~'e is uniformly distributed on the unit sphere, and o~ '||e|| and U are
independent. Hence, |le|| and U are independent, too. O

Figure 2.2: Cross-section of the unit sphere S3 | in R? at the plane containing
M={T(z):ze€ X} and (X)) ={l(z) : x € X}.

The uniformity shown in the corollary was the reason for choosing the
letter U as a notation for that random variable. Also, for every x € X, T'(x)
lies on the unit sphere, creating a path

M ={T(z):z € X}. (2.24)
Figure 2.1 gives an idea of what M U —M may look like for m = 3.

Remark 4. T'(z) is the image of the orthogonal projection of l(x) onto the
unit sphere. So for any x € X the point T'(z) lies in the plane spanned by



CHAPTER 2. SCBS AND SCRS IN LINEAR REGRESSION 16

the vectors ay and as defined in Remark 1. In Appendiz B we show that the
same plane is spanned by the vectors T (xy) and T'(z1). The image M of T
can be regarded as an arc on the sphere or a connected piece of the equatorial
line (up to orthogonal transformation) of length

ko = arccos(T(x1), T(.m)),

which s illustrated in Figure 2.2.

2.1.5 From bands to tubes

We have a close look at the sets of vectors

R(c,v) = {u € S igg(T(x),u} > s} (2.25)
and
{u € Sm1: :1612 (T(x),u)| > %} (2.26)

arising in the formulae for non-coverage probability in the cases of lower
(2.19) and two-sided (2.18) confidence bands, respectively.
What do they represent? We will find a nice interpretation, which will give
us the opportunity to apply the Volume-of-Tube formula.

For a fixed zy € X, the inner product of T'(zy) and any instance of U
ranges from —1 to 1 and will be 0, if they are orthogonal. It is a basic fact
that the scalar product of two vectors u and v in Euclidean space is related
to the angle they enclose via the equation

(u, v) = [lull [Jv]| cos <(u, v).
For two unit length vectors this reduces to
(u,v) = cos <(u,v),

or, equivalently,
arccos(u, v) = <(u,v),

where arccos is the inverse function of cos |f .

The angle between two vectors of unit length can be interpreted as the
shortest distance between their end points along the surface of the unit
sphere. For this reason <((u,v) may also be called the geodesic distance



CHAPTER 2. SCBS AND SCRS IN LINEAR REGRESSION 17

between u and v. We denote the angle (or geodesic distance) between T'(z)
and u by
O(z,u) = <(T(z),u) = arccos(T(x),u) € [0, 7.

For convenience, in the following formulae we write u instead of u € S,, ;.
It is clear that for any v € (¢, o)

{u 2 cos 0(xzo, u) > E}
~

_ {u:e(xo,u)<arccos <§>} (2.27)

(because arccos is strictly monotonously decreasing) will be the set of points
with a geodesic distance of less than

0 nax = arccos <£>
~

from T'(x) on the sphere, a kind of geodesic circular neighbourhood.

{u:(T(xg),u> > %}

Having understood this step, we have almost arrived at intuitively seiz-
able interpretations of (2.25) and (2.26), as will be shown in the following
paragraphs.

By construction, the function T'(.) is continuous, and so are (., u) and the
cosine function. The predictor space X is a closed interval and therefore
compact. Hence, there exists at least one z, in X', for which the function

x+— (T(x),u)

takes its supremum
(T(22), ) = sup{T(z), 0).
zeX
So for every u € Sp,—1, * = x, maximises the scalar product (T'(z),u) and
thus minimises the angle (or geodesic distance) arccos(T(x), u) between u to
M. We define

O(u) = arccos(T(x,),u) = arccossup{T(z),u)
zekX
= iggfv arccos(T (x),u) = ;gi@(z, u).

Again, the step from the first row to the second is possible, because arccos
is continuous and strictly monotonously decreasing. Hence,
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Figure 2.3: Situation in R3: The path M and its surrounding tube for @, =
0.35.

R(c,7) = {u sup(T (), u) > 5} - {u : 0(u) < arccos <5>} (2.28)

TEX v i

Now the interpretation of this set is very simple: it comprises all the vectors
u whose end points enclose an angle of less than

O nax = arccos <£> (2.29)
Y

with some point in the path M and create a kind of “ribbon” on the sphere
(see Figure 2.3). The probability in (2.19), which we need to calculate in
order to obtain the non-coverage probablity for a lower confidence band, is
just the probability that a random vector with uniform distribution on the
unit sphere hits this ribbon R. Our ribbon stretches on the surface of the
unit sphere S,,_; and is two-dimensional only in the special case of m = 3. In
order to make the description more general we will call it a tube. We denote
its area (or (m — 1)-dimensional volume) by

Ag(e,7).

The well-known formula for the (m — 1)-dimensional volume of S,, ; (see
Hotelling, 1939) is

Am—l =2

(2.30)
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The probability (2.19) can be written as their quotient

P <21€1£<T(x),U) > % ) = P(U€eR(c))

AR(C: 7) .

2.31
1 (2.31)

For the two-sided case the situation is slightly more complicated: We know
that
sup [(T'(x), u)| = sup(T'(x), u) V sup(T'(z), —u).

reX zeX zeX

Hence, we can write (2.26) as a union

zeX

{u:SUP|<T($)aU>| > %}

_ {u  sup(T(z), u) > 5} u {u csup(T(x), —u) > E}

TEX TEX Y
(2.28

-28) {u:0(u) < Omax} U{u: 0(—u) < Omax}
= R(e,7)U—-R(c,7).

The set is the union of the two tubes R(c,y) and —R(c, 7).
As before, this probability can be calculated by the quotient of the area

ARufR(Ca 7)

of R(e,v) U—=R(c,v) and the area of the (m — 1)-dimensional unit sphere:

P <sup (T(2),U)| > % ) = PU € R(e,7)U—R(c,7))

rzeX
ARU—R(Ca ’Y)

2.32
1, (2.32)

Remark 5. Note that for large values v the radius O, = arccos(c/v) of the
tube will be close to /2. In that situation the caps of the tube will intercept,
i.e. R and —R will not be disjoint, and

Aru-r(c,7) < Ar(c,7) + A_r(c, 7).

That is why for two-sided confidence bands an exact formula will be difficult
to obtain, as will be explained in the next section.
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2.2 An Exact Formula for One-Sided Simul-
taneous Confidence Bands

Sun and Loader (1994) propose an approximation formula for the calculation
of the non-coverage probability o depending on ¢. For a one-dimensional
setting we will show that the calculations can be simplified for linear models.
We will devise an exact formula in the case of one-sided confidence bands and
follow Sun and Loader to establish an upper bound for the two-sided case,
which allows us to calculate conservative two-sided simultaneous confidence

bands.

Theorem 2.7 (One-sided non-coverage probability). In the model as
described in (2.1) with known variance o and

ko = arccos(T(x1), T (xm))

the following assertion holds: For the one-sided simultaneous confidence con-
stant ¢, the non-coverage probability o of the corresponding confidence band

is
K‘/O 702/2
= — 1— ®(c). 2.33
a=__e + () (2.33)
Proof. As we have found out in the previous section, the set R represents a
tube on the (m — 1)-dimensional unit sphere in R™.
Using (2.31) enables us to write (2.19) as

r Axr(c,
m—1

C
oo

= Ail / Ar(e,7) fom (7) dy. (2.34)

c

The steps we are going to undertake are:

1 Find a decomposition of the tube into a tubular neighbourhood 7 and
two end caps C, and Cp,

2 determine the (m — 1)-dimensional volume of these parts, depending on
v and ¢,

3 integrate the volumes of the parts with respect to v, and

4 add the integrals
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Figure 2.4: Transformed tube consisting of the pieces C,, T and Cp.

We choose the smallest sample point z; € X’ and consider the vectors T'(z1)
and —T"(x1)/||T"(x1)||, which are orthonormal. By using the Gram-Schmidt
orthonormalisation, we define other m — 2 unit vectors resulting in a set of
m orthonormal vectors

b1 = T(fl?l)

b 1" (1)

? 1T (z1)]|
9 9

by = e3— Z(bi,€3>bz‘/ es — Z<bi: e3)b;
=1 =1

m—1

€m — Z<bza 6m>bz

i=1

b

: m—1
bm — 6m_z<biaem>bi/

where ¢; is the ith base vector of the canonical base of R™. Let B be the
matrix whose rows are the vectors b;. Then B is orthogonal, and hence

RP = {B&:&=(&,....&m) €RY,
MB = (B¢ &= (&,....&,) e M}

have the same surface area as R and M, respectively. For every x € X we
set T?(z) = BT (z).

We have proved in Appendix B, that M lies in the plane spanned by T'(x;)
and T'(zy). Thus, if \\T(z1) + A\T(x;) € M is transformed by B, then
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the coordinates of the transform are (\;, —)s,0,...,0)T, because of the or-
thonormality of the vectors b;, i.e. M?P lies entirely in the plane spanned by
the canonical base vectors e; and es. In particular

T"(z1) = (1,0,...,0) and T”(x,,) = (cos kg, — sin kg, 0, .. ., 0).

We will describe the sets M®Z and R” in R™ by the spherical polar coordi-
nates

61 = rsin 91 sin 02 ...sin 9m—3 sin gm_g sin gm—l
& = rsinfysinb,...sinfb,,_3sinf,_ocosb,,_;
& = rsinfysinf,...sinf,, _3cosb,, -
&4 = rsinfysinf,...cosb,_;3
Eno1 = rsinfycosfy
E€m = rcosb, (2.35)

as introduced in the proof of Theorem 2.5, and find that for every point
)\1TB(1‘1) + )\QTB(xl) € MB
by traversing the equations (2.35) from bottom to top we get

0 = 1l-costhy =6=7/2
0 = 1-sin(n/2)cosby = 0,=m7/2

0 = 1-sin(n/2)...sin(n/2)cos8b, o =0y o=m/2
Ay = 1-sin(m/2)...sin(7/2) co8bpy—1 = 1 = arccos Ag
A = 1-sin(n/2)...sin(7w/2)cosb, 1 = 0, 1 = arcsin \;.
In spherical coordinates, the end points of the path MP? are
T (1) = (1,7/2,...,7/2) and T®(2,,) = (1,7/2,...,7/2,7/2 + Ko),

and MP in spherical coordinates is

MP = {(1 g . ..,g,em,l) Oy € (7r/2,7r/2—|—/<;0)}. (2.36)

A tube around M?® can now be described by a main piece
T = {(1, 01, 02, ey Hmfl) :
<I((]-a 017 LRI 9m—2; gm—l)a (]-77T/2a o '77T/2a H’m—l)) S gmaxa
Hmfl & (7T/2,7T/2 + li(])},
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and two half (m — 2)-spheres of radius 6.«

Co = {(1,61,04,...,00, 1) :
<((1,01,...,0m-1), TP(x1)) < Omaxs Om1 € (T/2 — Omax, 7/2)}
Co = {(1,61,0,,...,0, 1) :
<((1,01,...,0m-1), T? (@) < Omax, Om—1 € (7/2 + Ko, T/2 + Ko + Omax) }

around the end points of MP. The tube can be partitioned in the following
way:
RB(Ca 7) = Ca(C, V)UT(Ca 7) Ucb(ca 7)'
Figure 2.4 depicts a typical transformed tube R? in R3.
This representation shows two important properties of the tube.

e There cannot be a so-called self overlap, since every cross-section of
the tube is distinguished by its #,, ; coordinate. Also, the caps do not
overlap, because Op.x < 7/2 and kg < 7.

e The length of the axial curve M?% is very easy to calculate:

ko = arccos(T(xy), T(xm))-

The latter property allows very comfortable calculation of the constant kg,
whereas the former allows us to apply Hotelling’s tube formula as an exact
measure of the tube’s (m — 1)-dimensional volume.

Let Ac = A¢, + Ac, be the area of the union of the two caps. Then
equation (2.34) is equivalent to

1 L
o = 1 /AT(C, V) frm (V) dy + 1, /Ac(c, Y) frm (7) dy (2.37)
We start by proving that the first term is
@6_62/2,
2m

In (Hotelling, 1939) we find a formula for the volume enclosed by a tube of
geodesic radius O, € (0,7/2) about a non-self-overlapping axial curve of
length k¢ on an (m — 1)-dimensional hypersphere:

(m=2)/2

Ko 72 20 . (2.38)

sin

In our case it is the (m — 1)-dimensional volume of 7.
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Special case . For m =3, I'(m/2) =T1(3/2) = /7/2, and (2.38) becomes
K02 Sin Oy,

which 1s convenient to see as follows.
In spherical coordinates the surface of the main part T of the tube is very

easy to describe:
{(1a 01, 02) : 7T/2 S 02 S 7T/2 + Ko, |91 - 7T/2| S gmax}a
and we can get its volume by integrating

w/2+kKo %+0max ™ /24 kKo Omax
/ / sin 91(191 d92 = / [/ COS 01d91:| d02
7r/2 T 71'/2 —0max

2 emax

= Ko[2 sin Opax]-

Using sinz = v/1 — cos? x we obtain

sinf,,x = sin <arccos <£>> =4 /1 — cos? <arccos <E>>
Y v
2
B 1 B ?‘

Now that we have the knowledge on the volume of 7

m—2

m—2)/2

and the y,, density
m—1,-v2/2
YY" e
me(/Y) = m/2_1 mY’
2 (%)

the first term on the right hand side of (2.37) is

F(%)/ Hw(m*m/? 1_5 T - Am—le=7?/2 "
m/2 0 T(2) 2 2m/2—1r(%)

—2

oc
2 2
/ﬁ;() C -1 _2/2
S R— T R e Ly
r(%mm/ﬂ/ ( 72> e
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because

c? 0
o o
= e ‘—’22/(2’7)%_16 7dy:e_§2%/'y%_le Tdry
0 0
r(7)

We now have to take care of the second term on the right hand side of (2.37).
Johansen and Johnstone (1990) provide the formula for the area of the union
C =C, UCy of the two caps:

1

Acle,y) = Amo / (1 —y?)m=3/2qy, (2.37)
We find that
or(m-v/2 2™/ ['(m/2)
L((m—1)/2)  T((m—1)/2)T(m/2)y/7
o T2
TOT(m = 1)/2)y7

Am—Q

and thereby

_ m/2 m3 2
Aelen) = Anp —1/2f/ .

Substituting this expression into (2.37) it remains to show that

/OO L((m —72/32 \/_/ (B2 () dydy =1 — ®(c).

Following the proof of Knowles (1987) we denote the left hand side of the
above equation by g(c). By explicitly writing down the x density and inter-
changing the integration order we obtain

1 ! > )
— 1 — 2\(m—3)/2 / m—1_—vy /Zd d
g(C) F((m — 1)/2)2(m2)/2\/7—r/0 ( Y ) oyt Y e Y| oy
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Differentiating g with respect to ¢ affects only the integral
oo oo
/ fym’ler/Qd’y — ym/ ,ymflewz/%fdfy
cy—! c
in the square brackets, whose derivative is

_ 1 2 /942
mmlec/2y’

and hence
1 ' 2\(m—3)/2 1 /2y?
! _ 1— m— o, —m_ m—1_—c?/2y? d
00 = Fr— s ) 1 y e te ] dy
Cm—l

1
= — _ g2\ (m=3)/2, —m —c? /2y
- F((m_l)/Q)Q(mQ)ﬂﬁ/O (1—-y%) y e dy. (2.38)

Making the change of variable

the integral in (2.38) becomes

m—3)/2 —(m—3)/2
/oo 2u =3/ c? o~ (2ute?)/2,.=2 4.
0 2u + ¢? 2u + 2

—f2 oo foy\ (m3)/2
- (B)
c 0 c

and thus
6702/2

/
c) =— :
g(e) = ——5=
which is the derivative of 1 — ®. Hence, showing that g(0) =1 — ®(0) =1/2
will finish the proof.
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This is easy to see as

. m/2 1 (m—3)/2

90 = Tt | 0
_ 1 F(m/2) / m—3)/2  —1/2
- N ] O

where fmTfl7% is the density of a beta random variable. O

Construction of the lower SCB

In Theorem 2.7 the non-coverage probability is expressed as a function of c.
To obtain a lower simultaneous confidence constant with coverage probability
(1—«) we solve the formula for ¢. As the formula is smooth and monotonous,
this can easily be done numerically.

Then inserting ¢ into (2.12) yields the desired confidence band.

Lost exactness for two-sided SCBs

If we want a two-sided confidence band, we can still use a similar formula,
but it will not be exact.

The reason is that the tubes whose volumes are calculated may intersect or
— thinking in m = 3 dimensions — “overlap”, as can be seen in Figure 2.5.

Corollary 2.8 (upper bound for the two-sided non-coverage proba-
bility). In the model as described in (2.1) with known variance o and

ko = arccos(T(x1), T(x,,))

the following assertion holds: For the two-sided simultaneous confidence con-
stant ¢, an upper bound for the non-coverage probability o of the correspond-
g confidence band is

a< e 4 91— 3(c)). (2.39)
m

Proof. With (2.18) and (2.32) we have

/ARU 2 (.7) Fin () d

m 1
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Figure 2.5: Example of overlapping tubes on the unit sphere.

The tubes R and —R have the same (m — 1)-dimensional volume, and if they
do not overlap (i.e. if v is sufficiently small), then

ARU—R(Ca 7) =2 AR(C, ’Y)-

For large ~ the caps of the tubes overlap (Remark 5, Figure 2.5), and the
above equation degenerates to the inequality

ARUfR(C: ’7) <2- AR(Ca /Y)

Since the x,, density is strictly positive on (0, 00), we obtain the following
formula:
o

[ Anle i, () dr

C

a <

The right hand side is twice the non-coverage probability of a lower SCB
from Theorem 2.7. It follows (2.39). O
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2.3 An Approximation Formula for the Non-
coverage Probability

The following approximation formula from (Sun and Loader, 1994) states
that the bound in Corollary 2.8 can be used as an approximation. Further-
more, Sun and Loader provide an analogous formula for the case of consis-
tently estimated variance.

Proposition 2.9 (Approximation for «, d = 1 (Sun and Loader,
1994)). Let (1 —«) be the confidence level and c the corresponding two-sided
confidence constant. If 02 is known, then

a="e"2 4 91— B(c)) + o(e /). (2.40)
7
If o is estimated by 6 with v6?/o? ~ X%, and is independent of (T(t),€),
then

Ko C2 —v/2
o — <1+—> + P(Jt,| > ¢). (2.41)
m v

The calculation of the confidence constant to a given confidence level is
carried out by numerically solving the appropriate approximation formula
for c.

Remark 6. The formulae can also be used to calculate lower confidence
bands. Following the reasoning in Corollary 2.8 the formula corresponding
to (2.41) is
2\ —¥/2
Ko c 1
— 1+ — —P(|t,]| > ¢).
a ( + 1/) +2 (It > ¢)

2T

Outlook

The problem of overlapping tubes would be overcome, if there was a formula
for the (m — 1)-dimensional volume of the overlap. Considering the relative
simpleness of the tubes’ structure, which results in an simple structure of the
overlap itself, we can expect to find at least a lower bound for this volume.
This could considerably improve the two-sided approximation formula, pos-
sibly leading to exact two-sided simultaneous confidence bands in linear re-
gression.
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2.4 Simultaneous Confidence Bands in
Weighted Linear Regression

The procedure described in Section 2.1 will need some modifications to allow
for the usage of weights for every covariate level. As Chapter 3.4 will show,
this gives us the opportunity to use the tube approach also in the more com-
plex generalised linear models, and we will be able to construct simultaneous
confidence bands for those.

Let us suppose we still have a linear regression model

Yi=0o+ bz +ei, i =1,...,m,
now with independent normal heteroscedastic errors
i~ N(0,0;),i=1,...,m.

Hence, the responses Y; are independently normally distributed, too. In
weighted linear regression weights must be the reciprocal® of the variances
(see Freund and Wilson, 1998), forming a diagonal weight matrix

o 2

W = € M(m x m).

In analogy to (A.1), the weighted least squares estimator 3 = (X”WX)"' X"WY
is unbiased. As in the non-weighted case, we define a linear vector function

I(z)=WX(X"WX)"'(1,2)" € M(m x 1),

which for 0? = ... = 0% = 0% coincides with the I defined in (2.4). The
unbiasedness of the linear estimator

of the true response function f(x) can be shown in the same way as for its
unweighted counterpart in (2.6). Denoting I”(x) = W'/2I(x) and
e = W~2e ~ N(0, I,) we may write their difference in the form

F(2) = f(2) = (Ua),€) = (WUa), W %) = (1¥(2), "), (2.42)

Lor at least proportional to it



CHAPTER 2. SCBS AND SCRS IN LINEAR REGRESSION 31

Keeping in mind that the responses are independent, we proceed like in
(2.8), and we can see that the variance of the estimator f(z) is

Vi(z) =V(l(z),Y) = Zl?(fﬂ)ff? = [l (@)I*.

The variance of Y is now “hidden” in the function I.
Two-sided symmetrical confidence intervals have width proportional to the
standard deviation, which is ||I"(z)||, so the analogon to inequality (2.13) is

|f(z) = f(@)] < elli“ ()],
and with the representation with the scalar product from (2.42), this becomes
(1 (2), )] < c[[1*(2)]]-

For the one-sided case, the equality is the same without the absolute value
bars on the left hand side. Once more, we define two functions of unit length:

" (z) ev

=——and U = ——.
[0 ()] lle]]

Now it is straightforward to find that the counterparts to (2.18) and (2.19)
are

T (2)

o = /COOP<sup|(T“’(:E),U>|>§> dy and

TEX
a = / P (sup(T“’(x), U)> E) dy.
c zeX Y

The quantities and functions, which are involved, satisfy the same properties
as the corresponding ones in standard linear regression. In particular,

e ¢ is a standard normal random vector,

e U is uniformly distributed on the unit sphere and |[€"|| is independent
from U (apply Theorem 2.5 with X = &%), and

e [¥ is a linear function.

Hence, we can use the same formulae for the non-coverage probability (see
Theorem 2.7 or Proposition 2.9) as in the unweighted case, now calculating
the length of the axial curve by

ko = arccos(T" (x1), T (z))-
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With the simultaneous confidence constant ¢ (obtained by solving the appro-
priate formula for ¢) we construct the two-sided and lower confidence bands

{@w):zex ue|f@—d"@] f@)+dr@]]} and
{(a:,u) cxeX,u€ [f(x) —c||lw(z)||,+oo]}.

For wy; = ... = w,, = o 2 the unweighted model and the weighted model
coincide, so it suffices to implement the heteroscedastic case with weights,
and use it for the homoscedastic case with uniform weights.

2.5 Extension to two Dimensions: Simulta-
neous Confidence Regions

Up to now we have seen how SCBs can be calculated in univariate linear
regression, be it with or without weights.

The SCBs are aimed to be applied to mortality surfaces in order to model
human mortality at different ages for different cohorts. This application re-
quires two covariates: age and time.

The next step must therefore be the extension of the tube approach to d = 2
dimensions, i.e. to bivariate regression. We will use results of Sun and Loader
(1994) to modify the weighted regression SCBs accordingly, thus making
them simultaneous confidence regions limited by two two-dimensional sur-
faces.

We consider the bivariate model
Y;'j :ﬁg+xj/81+tj/82+€ij, 1= 1,...,m,j = 1,...,T, (243)
with independent normal errors

Eij ~ N(U,Ufj), 1=1,...m,j=1..,T.

Without loss of generality, we assume the covariate values to be ascending, i.e.
21 < ...< Xy and t; < ... < tp. Thus the predictor space X = [zq, ] X
[t1,tr] is the cartesian product of the two smallest intervals embracing all
covariate values. The weight matrix

)
011

)
P

W= , € M(mT x mT)

-2
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is quadratic with dimension m7T'. Again, we define a vector function
Uz, t) =WX(XTWX) ' (1,2,t)F € M(m x 1)

on the predictor space X', where

1 ...1 1 ... 1 1 ... 1\"
X= |z ... 1 29 ... T9 Ty ... Tp € M(m x 3)
tv ... tr t1 ... tpr t1 ... tr

is the design matrix. If we set
Y = (}/11:'"7}/1T:1/217"'7}/2T:1/317"':YmT)T7

we still get an estimator

A~

f(:E, t) = <l(l‘,t), Y>
based on the generalised least squares estimator (see, for example, Freund
and Wilson, 1998) R
B=(X"WX)'X"Wy,

and an analogous representation for the mean response function

[, 1) = (U, 1), ),

where p = (f(z1,t1), f(@1,t2), ..., f(@m,t7))" is the function f evaluated at
all covariate combinations. For any point (x,t) in the predictor space, the
variance of the estimator f(z,t) can be calculated as shown in (2.8):

Vi(@,t) = Vii(z1),Y)
= [ ()P,
where 1“(z,t) = Wzl(z,t). Due to the slightly differing model, we have to

adjust the definitions of confidence constant and confidence band to match
the new situation.

Definition 2.10 (simultaneous confidence constant, d = 2). For the
weighted linear regression setting with a 2-dimensional rectangular predictor
space X, c is called a two-sided simultaneous confidence constant to the level
l—a:<—=

P (\‘/(m,t) € X |f(x,1) - fz, )| < c||l“’(m,t)||) —1-a

In the same setting c is called a lower simultaneous confidence constant to
the level 1 — o : <=

P (V(x,t) € X fla,t) - fla,t) < c||l“’(x,t)||) —1-a
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Definition 2.11 (simultaneous confidence region (SCR), d = 2). The
set

{(o.t0): (5,0) € X, we [, 0) = (e DI, flw,8) + etz 0)]] |

is called a two-sided simultaneous confidence region for f on X to the con-
fidence level 1 — a : <= ¢ is the corresponding simultaneous confidence
constant. The set

{@t): (@) € X, ue |fz1) - ct(z ]|, +oc) }

is called a lower simultaneous confidence region for f on X to the confidence
level 1 — o : <= c is the corresponding simultaneous confidence constant.

A representation for « is derived exactly as in the previous sections. Set-
ting

TV (2,t) = |1°(z, )| 1“(x, 1), € =Wze, U=|e"| 'e”

the non-coverage probability in the two-sided and lower case is

a = [P[ s (@O > ) £, () and
(z,t)ex Y
C
o = /P< sup <Tw(l‘,t),U> > _> me(’Y) d’%
(z,t)eX Y

C

respectively. The only difference with respect to the 1-dimensional version
is the calculation of the internal integral. In this 2-dimensional setting the
formula for the volume of the tube described by

sup (T"(z,t),U) > <
(z,t)eX Y
is different. The reason is that
M ={T"(x,t) : (z,t) € X}

does no longer describe a one-dimensional path with two single end points,
but a two-dimensional manifold of R™, which has four limiting margins or
edges. So the formula will include terms to adjust for the tubes around these
edges and around the corners where the edges meet.
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2.6 An Approximation Formula for the Non-
Coverage Probability for d = 2

The extension of the concept as far as it is described above is relatively
straightforward. For the remaining calculation of the volume of the tube
around the 2-dimensional manifold M we resort to Loader (2004) and cal-
culate the new constants arising in their two-dimensional approximation for-
mula.

Proposition 2.12 (Approximation of « for d = 2, Sun and Loader
(1994)). Suppose X is a rectangle in R?. Let kg be the 2-dimensional volume
of M and ¢y be the length of the boundary of M. If the variance o is known,
then

a = %662/2 + 5—2602/2 +2-(1—-®(c))+o (6702/2> .

If the variance o® is estimated by 62 with v6?/o* ~ X2, then

woe  T(4) 1+02 —(n/2
a = _
Vvmdl2 T(%) v
Co ? e
S04 & P(lt,| > o), 9.44
s 2 (14S) erul >0 (244

where t, is a random variable distributed according to Student’s t-distribution
with v degrees of freedom.

Thus — for a linear regression setting in two dimensions — we get SCRs
limited by two surfaces, as the next section will illustrate.
In the formulae of Proposition 2.12 the values of kg and (, must be calcu-
lated. Unfortunately g is no longer the length of a one-dimensional path,
but the area (or 2-dimensional volume) of M. For the implementation we
use the calculation proposed by Loader (2004) using numerical integration.
A formula for the area of a two-dimensional spherical quadrangle embedded
in the surface of S, ; could perform this calculation more elegantly.
The one-dimensional border of M consists of four arcs on the unit sphere
Sm—1. In analogy to the calculation of M in the univariate case, the length
(o can be calculated as the sum of the four angles between the corners
T(x1,t1), T(Tm,t1), T(xm,tr) and T(xq, tr) of M.
Finally, the confidence constant is calculated in the same way as before, i.e.
by numerically solving the approximation formula for c.
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Figure 2.6: Lower SCB in unweighted linear regression.

2.7 Pictures of
Simultaneous Confidence Bands and Re-
gions
We have discussed the theory of SCBs and SCRs explaining their calculation
in linear regression.
In this section graphical illustrations will clarify some of their properties.
Examples of SCBs in univariate linear regression

The parameters in linear regression do not have any influence on the confi-
dence bands, as only the weights and the design of the model determine the
confidence constant and the estimator’s variance. Throughout this section
the true intercept parameter will be 0 and the slope parameter will be 0.5
over the predictor space X = [1, 75].

As an example, two different settings were chosen.

e equidistant covariate levels between 1 and 75 and variances
0l =50,i=1,...,50,

(homoscedastic), and



CHAPTER 2. SCBS AND SCRS IN LINEAR REGRESSION

response

response

40

30

20

10

15 20 25 30

10

- fitted regression line
.- —— 95% simultaneous CB
T --- true regression line

20 40 60

Regression with homoscedastic errors

Figure 2.7: SCB in unweighted linear regression.
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e —— 95% simultaneous CB
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Regression with heteroscedastic errors

Figure 2.8: SCB in weighted linear regression.
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—— 95% simultaneous CB -
v --- 95% pointwise CB -7

distance to fitted regr. line

0 20 40 60

predictor space

Figure 2.9: Distance from the upper border of confidence bands to the fitted line.

e non-equidistant (skewed) covariate levels and variances
0?7 =20,i=1,...,25 and o = 90, i = 51,...,50
(heteroscedastic).

Normal linear regression data were simulated with with mean p; = 0.5x;
and the variances specified above. This implies the use of unweighted linear
regression for the first setting and weighted linear regression for the second
setting. Then the confidence constant ¢ was calculated by solving the respec-
tive exact and approximative formulae from the previous sections.

Figures 2.7 and 2.8 show the two-sided SCBs in unweighted and weighted
regression. Clearly, they are centered around the fitted regression line. In
both pictures the dashed true regression lines are covered by the SCB, which
was likely, because they have a coverage probability of about 95%. Note that
in the second figure for small variances and small distances between covariate
levels, the confidence bands are narrower. This is a property which is typical
for (not only simultaneous) confidence bands in weighted regression. A lower
SCB for the homoscedastic setting is shown in Figure 2.6. Its lower border
is closer to the fitted line than in the two-sided case.

It is also interesting to compare the ordinary pointwise confidence inter-
vals with our SCBs. In order to bring out the differences, in Figure 2.9 the
distance between the fitted regression line and the border of simultaneous
and pointwise confidence bands is plotted. The figure confirms the result of
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Figure 2.10: Two-dimensional analogon to Figure 2.9: Distance from the upper
border of the SCR to fitted surface.

Remark 2: SCBs are wider (here ¢/®~'(1 — ) &~ 1.24 times) than pointwise
confidence intervals. However, their width differs only by a factor so that
they have the same shapes.

Examples of SCBs in bivariate Linear Regression

To present an SCR over a two-dimensional predictor space X = [1,18]* we
have chosen a heteroscedastic model, in which the variances are constant

in the direction of the covariate x. They can assume two different values,
depending on the covariate ¢, i.e.

2 _ )1 if j €{1,...,9},
Y 3 if j € {10,...,18}.

Like in the univariate case we have simulated normal linear regression data
and had the simultaneous confidence constant calculated by solving the ap-
proximation formula for c¢. Figure 2.10 is the two-dimesional counterpart to
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Figure 2.9 and represents the distance of the upper bounding surface of the
SCR to the fit.



Chapter 3
The Heligman & Pollard Model

3.1 Modelling Age

Underlying Data

Let X be a continuous random variable recording the age at death of individ-
uals sampled from a population of interest. Let F(z) and S(z) =1 — F(z)
be the cumulative distribution and the survival functions of X, respectively.
Assume we want to model the mortality of the population from a certain age
Tmin UP tO0 & maximum age Tmac. We then denote the first age in the study
by 1, and the maximum age by m. For example, if x,;, = 51, a 61-year old
person will have age x = 11 in our model.

For each age x = 1,..., m, we independently draw a sample of size n, of x-
aged individuals, and count the number d,, of deaths which occur within each
sample during one year. The resulting data

(nladl); R (nm; dm):

are known as aggregated life-table data and are typical of many cross-sectional
and cohort studies in demography.
The death counts d, are realisations of binomial random variables

D,~Bp, ., v=1,...,m,

with parameters n, and m,. The latter is the unknown probability to die
before age x4+ 1 conditional on having survived up to age x, and is connected

41
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to the distribution of X via

Plz<X<z+1)
P(X > x)
F(z+1)— F(x)
1— F(x)
S(x) —S(z+1)
S(x) '

Ty —

We are interested in estimating m, on the basis of

dy
Qe = —-

n.’ﬂ
The notation g, is widely used by demographers. We will therefore call the
corresponding random variable

Based on these data, parametric inferences on the distribution of X can be
carried out by assuming S(x) = S(z;0) to be known up to a number of
parameters # and maximising the likelihood function

For a detailed derivation of binomial likelihood functions see Appendix C.

3.2 The Heligman & Pollard Assumption

Thatcher et al. (1998) discuss several models for mortality at old ages. One
of them is the reduced Heligman & Pollard model.

Initially it has been developed to describe mortality for all ages (see Heligman
and Pollard, 1979) resulting in a model with eight parameters in three terms.
Each of the three terms corresponds to a different period in life. For ages
above 50 the first two terms are negligible. What remains is one term with
two parameters, which models the conditional probability to die by

67+ﬁm

S Txes (3:1)

Ty
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Figure 3.1: Heligman & Pollard and Gompertz hazard for the parameters v =
—4.42 and g = 0.07.

for two parameters o and (. If we transform equation (3.1) by the logit
function

1—=x

logit(x)zln( ’ ) (3.2)

we obtain
logit(m,) = v + fz. (3.3)

Formula (3.2) shows the monotone transformation which is required to rep-
resent the parameter of interest as a linear function of age. It is called a link
function (see McCullagh and Nelder, 1989) of the generalised linear model
(GLM) defined by (3.3).

In demography it is common to describe lifetime distributions by the
hazard function

11— F(x)

An approximation for the hazard function in the Heligman & Pollard model
is derived in the Appendix D:

h(z) ~ In(1 + €7+77), (3.4)

Figure 3.1 shows that for small x the hazard function is very close to the
Gompertz hazard e7™#* (a popular model for human mortatlity). It then
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levels off to asymptotic linearity. The approximation in the above equation
serves just for the representation of the model in terms of the hazard and is
not part of any of our calculations concerning confidence bands.

3.3 Temporal Effects

Mortality data are often available for a number of different cohorts born in
adjacent years t = 1,...,T. In other words, the data are in the form

(n:v,ta d:v,t)a

where n,; denotes the z-aged survivors of the cohort of people born in year
t, and d,, is the number of deaths occurred among those between age z and
age v+ 1. Such a multivariate time series is called cohort mortality surface by
demographers. Figure 3.2 displays an example of a cohort mortality surface
for female Swedish mortality data drawn from the Human Mortality Database
(2005).

The terminology involved in the univariate model translates to the new one
without any changes, i.e. we now have a random variable X; modelling age
at death for the ¢-th cohort. The corresponding cumulative density function
is F} , and the conditional probability to die is 7,4, while d,; are the death
counts in cohort ¢ at age x. The random variables

1

D:c,t ~ B(nm,ta 7T:v,t)7 Qm,t -

x,t
x,l

are also defined in analogy to the case without temporal effects.

Demographic models with a hazard function evolving in time can be de-
scribed as linear or nonlinear generalised models where one or more param-
eters account for temporal effects.

In our case it seems reasonable to extend the model (3.3) by substituting the
intercept 7 in the linear predictor of the model by a linear function depending
on t, which leads to

logit(m, 1) = 70 + N1t + Bz (3.5)

This is still a GLM: the systematic component (i.e. the right hand side) is a
linear function of the covariates time and age.
Denoting v; = vo+71t, for every cohort ¢ the resulting conditional probability

to die
e’yt‘i’ﬂm

T =
LT 4 emtBa?
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Figure 3.2: Mortality surface: empirical probability to die for Swedish female
birth cohorts 1840-1892 at ages 61-100.
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Figure 3.3: Fitted values of the probability to die for Swedish female birth cohorts
1840-1892 at ages 61-100.
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Figure 3.4: The change in life expectancy our model can describe for different
values of 1 and v = —4.3, § = 0.104

describes a Heligman & Pollard model with a time-varying parameter.

3.4 Justification of the Modelling of Time

At first sight it may not be clear why modelling time linearly in the sys-
tematic component will enable us to describe the trends we want. Since
best-performance life expectancy! and life expectancy in several single coun-
tries have increased nearly linearly over the past 160 years (see Oeppen and
Vaupel, 2002), our model should be able to express that linear trend.
Apparently there is no closed formula for the life expectancy

EX, = / 1 — Fy(z)dz
0

of a Heligman & Pollard-distributed random variable.

For our needs however, the numerical calculation of the life expectancy
for some sensible parameters will suffice to demonstrate the adequacy of the
model.

Hor each year we choose the life expectancy of the country which has the highest life
expectancy
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For if we take the Heligman & Pollard parameters 79 = —4.3 and § = 0.104
(estimated from Swedish females of birth cohorts 1873-1892 at ages 61 to
90) and then choose different values for 7, around the estimated value v, =
—0.018, we see that life expectancy increases nearly linearly over a large
range of years: If the absolute value of the v, parameter is reasonably small,
this virtual linearity stretches over 60 years or more as can be seen in Figure
3.4. Figure 3.3 depicts the fit of the Swedish data.
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3.5 Constructing Simultaneous Confidence
Bands and Regions for a Generalised Lin-
ear Model

Sections 3.2 and 3.3 show that describing mortality according to Heligman
& Pollard can result in one of the models

logit(m,) = v+ pz or (3.6)
logit(my:) = 70 + 1t + fe. (3.7)

We will therefore have to modify the SCBs and SCRs we have calculated in
Chapter 2 to cope with the new challenges arising in GLM.

In order to derive an appropriate procedure for a GLM as opposed to
a standard linear model it is not necessary to consider more than d = 1
coordinate, i.e. (3.6) will be the model under examination. Differing from
the tube formula, all formulae in this section translate to a d-dimensional
case without any problems.
Recall that the data in our model come as m ordered pairs (n,,d,), * =
1,...,m, where n, is the number of sampled individuals of age x, of which d,
experience an event (i.e. death) within the period [z, 2 + 1).
For the fitting of the model we are provided with the reliable tool called
iteratively weighted least squares (IWLS) algorithm, which is implemented
in the statistical programming language R in a function called glm.
The maximum likelihood estimates 4 and B of the model parameters can be
obtained by this algorithm (see McCullagh and Nelder, 1989). The estimate
for the linear predictor is

resulting in fitted values of
Ny =n(x), z=1,...,m.
The estimated mean response function 7(x) is then obtained by
it(x) = logit™ (1(2)), (3-8)
where logit™ : R — (0, 1) is the inverse of the logit function with

logit™ (z) = 1j7 (3.9)



CHAPTER 3. THE HELIGMAN & POLLARD MODEL 49

SCBs for the linear predictor

Loader et al. (2000) propose an approach suitable for models employing the
canonical link function, which in our case is the logit-function.
Applying a canonical link means that the natural parameter 6 of the expo-
nential family is equal to the linear predictor 7 (see McCullagh and Nelder,
1989). Hence, for the inverse logit™ of the link function evaluated at 1 we
obtain

logit™ (n(x)) = logit ' (8(x)) = E(Q.), (3.10)
which we know to be a monotone function, namely the mean function of the
exponential family. In fact, the link inverse logit™! is strictly monotonously
increasing, because its codomain is (0,1) and simple differentiation with re-
spect to x yields

(logit™)'(z) = logit™(z) — (logit™(x))? > 0. (3.11)

Thus our goal will be to find SCBs for the linear predictor 7(z) for z € X,
which will instantly yield the SCBs for the mean response function E(Q,,).

Response transformation

We use the logit link function as defined in (3.2) to transform our responses
gz to

2, = logit(qy). (3.12)
Likewise, we obtain a new random variable
Z, = logit(Qy). (3.13)

Under the assumption that the Heligman & Pollard model is valid, the trans-
formed responses are approximately linear with respect to z. We will treat
our transformed values z, as new responses. In order to construct SCBs it is
very important to know the variance of Z,.

Variance of the transformed response

Obviously, we can not expect the transformed responses to have constant
variance. We can approximately calculate the variances of the transformed
response from the variance and the mean

1
VQ. =V(n;'D,;) = —m(1—m,) and EQ, =m,

x
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of the original response by using the approximation formula

VZ, ~ ¢ (EQ,)* - VQ,. (3.14)

Hence, for the logit transformation we approximate the variance of the trans-
formed response by

1

Ny (1 — )

VZ, = Vlogit(Q,) ~ (3.15)
In Appendix E you find a derivation of both (3.14) and (3.15) based on the
0-Method.

In order to obtain empirical variances we use the estimator ¢, in the place of

7, and obtain
A 1

VZ,~ ——.
nm‘]:v(l - qg:)

The reciprocal of these will serve as the weights for the weighted linear re-
gression.

Weighted regression SCB and back-transformation

Now we have a linear framework with heteroscedastic errors, in which we do
no longer construct confidence bands for f, but still for a linear function: the
linear predictor 7. This suggests the application of the tube method in the
case of the weighted regression model as described in Section 2.1, even though
the normality assumption is violated. The question if the error structure is
appropriate will be discussed in Section 3.6.

Faraway and Sun (1995) point out that the estimation of the weights induces
further variance and hence leads to a coverage probability slightly less than
the nominal coverage probability 1 — . However, in Section 4 we will see
that this additional variance does not do much harm, and we have decided
not to include correction for it in this thesis, treating the estimated weights
as known weights.

Having chosen a confidence level 1 — a, we carry out the procedure described
in Chapter 2 to obtain the simultaneous confidence constant ¢ and — for every
x € X — the estimated standard deviation of the linear predictor 7,.

Hence, a confidence band around 7 is

{(z,u) 12 € X ue ((z) = clll(z)], i(x) + clli(2)]])}
having the 1 — « coverage property

l—axP(Vee X i) —dli@)| <nlx) <ilz) +cli(@)]) -
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If the above chain of equalities holds, then it still holds after transformation
by a strictly monotonously increasing function. As mentioned in (3.11), the
inverse of the logit function is strictly monotonously increasing. Also, by
(3.10), logit ' (n(x)) = 7(z). Hence,

l—-a ~ P(VrelX:
logit™ (i(z) — clli(2)]]) < m(x) <logit™ (i(z) + clli(z)])) -

Therefore the set

{(z,u) 12 € X, u € (logit” (i)(x) — c[[l(2)]), logit™ (i (x) + cll(2)]])) }

is a two-sided simulataneous confidence band for 7(-) to the level (1 — «).

Remark 7. Note that in the case of two-sided confidence bands the upper and
lower border will in general not be symmetrical (see pictures in Section 3.7).
By construction, the band built around the estimator 1) of the linear predictor
15 symmetrical, but the back-transformation induces some asymmetry, an
effect of the non-linearity of the logit™ function. This result is not surprising,
and by no means unintentional. However, the function logit™ can be locally
approximated by a linear function. For a narrow confidence band the linear
approzimation on

(logit™ (i)(z) — clll(@)]]), logit™ (7 (x) + clli(z)[]))

18 so good that the asymmetry practically vanishes.

3.6 Discussion: Is the Tube Approach Still
Appropriate?

As explained on page 15, in order to apply the tube formula, the indepen-
dent error vector must be normally distributed. Despite all transformations
it is clear that the transformed random variables (though independent) do
not follow a normal distribution. As transformed from the discrete binomial
distribution they are discrete, too.

Can we still hope to save the argument? We can, because of the asymptotic
normality of linear functions of random variables and the local linearity of
the logit function. This is an argument similar to the one given in (Loader
and Sun, 1997).

The idea is that, if the error distribution of the ¢; is nearly symmetrical, the
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Figure 3.5: Density functions of the x? distribution with 20, 50 and 100 degrees
of freedom, corresponding to skewness values of 0.63, 0.43 and 0.28, respectively.
The gray dashed lines represent the mean value.

vector ||e||~'e will be nearly uniformly distributed on the unit hypersphere
(see Corollary 2.6). The skewness of the transformed random variable Z,
will shed light on how symmetrical the errors are.

Using pseudo-random numbers, 700, 000 realisations of binomial random vari-
ables D ~ B(w,n) for different values of 7 and n have been simulated and

then transformed by
D
Z = logit (—)
n

in order to obtain a simulated sample of the distribution. The empirical
skewness of this sample has been evaluated (Table 3.1), the result being that
the least absolute skewness appears for 7 = 0.5 and the highest absolute
skewness can be observed for m towards the borders of the unit interval. The
maximum absolute skewness for 7 € (0.05,0.95) seems however manageable
for reasonable values of n. Let us consider the y2-distribution with n degrees
of freedom as a reference. It has a skewness of

2v2

\/ﬁ b
which is = 0.63 for n = 20, ~ 0.43 for n = 50 and =~ 0.28 for n = 100.
The corresponding density functions depicted in Figure 3.5 give us some
indication on how to rate the skewness values. The second plot has a skewness
slightly larger than the maximum skewness of 0.4 in Table 3.1 and does not
appear markedly skewed. In any case, these considerations can only be a
rough indication, just enough to nourish our hopes. Loader and Sun (1997)
therefore suggest to run simulations to assess the influence of the lack of
normality, which will be done in Chapter 4.
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n 500 1000 2000 5000 10000 30000
max. abs. skewness of D 0.18 0.13 0.09 0.06 0.04 0.02
max. empir. abs. skewn. of Z | 040 0.26 0.19 0.11 0.09 0.05

Table 3.1: Maximum absolute empirical skewness values of simulations of D and
7 for different values of the binomial parameter n for = € (0.05,0.95).

3.7 Pictures of Simultaneous Confidence
Bands and Regions for the Heligman &
Pollard Model

SCBs and SCRs in generalised linear models look different from their coun-
terparts in weighted linear regression mainly in two ways:

e they are located around a curve (or surface), which in general is not
linear,

e they are not necessarily centered around that curve (or surface), i.e.
the are asymmetrical.

One-dimensional predictor space

We have simulated data for one cohort with a small age 1 sample size n; =
40, i.e. sample sizes decrease with age from n; = 40 to nyg = 1. The
first step is to calculate a confidence band around the linear predictor, just
like in ordinary weighted regression. The result can be seen in Figure 3.6.
The next step is the back-transformation as described in Section 3.5. In
Figure 3.7 one can easily spot the first of the properties mentioned above,
whereas the asymmetry is less evident. The left plot in Figure 3.8, shows
the difference of the fit and the upper and lower borders of the confidence
bands: the asymmetry of the band is now slightly visible. The right plot
shows how for larger sample sizes (here n; = 600) the asymmetry decreases,
because the variances are very small and the back-transformation of the
narrow confidence bands is nearly linear (see Remark 7).

Two-dimensional predictor space

The two-dimensional predictor space in the Heligman & Pollard model refers
to age and cohort (time). We have already encountered a mortality surface
and its fit on page 45. The same data of Swedish females of birth cohorts
1840-1892 at ages 61-100 (Human Mortality Database (2005)) have been
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Figure 3.6: Heligman & Pollard GLM, d = 1: SCB around the linear predictor.
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Figure 3.7: Heligman & Pollard GLM, d = 1: SCB calculated from simulated
data.
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Figure 3.8: Heligman & Pollard model: Difference of the SCBs and the fit. On
the left age 1 sample size is n; = 40, and on the right n; = 600.

used to calculate an SCR. Since the sample sizes are large, the SCR is very
narrow. The plot of the distance of the (upper) surface of the SCR (Figure
3.9) is therefore the only practical way of visualising it.
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Figure 3.9: Heligman & Pollard GLM for Swedish females of birth cohorts 1840-
1892 at ages 61-100: Distance from the upper border of the two-sided SCR to the
fit.



Chapter 4

Simulations

4.1 Motivation and General Procedure

The theoretical considerations give us the means to calculate SCBs. In par-
ticular, we have an exact formula for one-sided SCBs in univariate normal
linear regression.

For the other cases, the third-order term of the approximation formulae is a
source of inaccuracy. The coverage probability is expected to be higher than
the nominal probability 1 — a.

Without loss of generality, we only consider 95% confidence bands, i.e. we
choose o = 0.05.

For confidence bands in the Heligman & Pollard generalised linear model,
two further uncertainties may affect the quality of the confidence bands:

e the additional variance induced by the estimation of the weights, and

e the normal error assumption, which is fulfilled only approximately for
large sample sizes.

This chapter is devoted to the assessment of some of these issues by
simulation experiments. In view of the large choice of possible experiment
designs, the selected designs are few and can only provide a first impression
of the properties of SCBs and SCRs. The basic approach is

1 Choose the model parameters.
2 Calculate the corresponding true mean response function.
3 Repeat the following steps until coverage ratio convergence:

(a) create pseudo-random numbers according to the model under examina-
tion,

a7
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Figure 4.1: Example of the behaviour of coverage success ratios.

(b) run the SCB construction process to calculate the confidence constant,

(c) check if the true mean response function is covered by the SCB and
update the coverage ratio.

In most cases 7000 loops were carried out. Figure 4.1 shows an example
of a characteristic development of the coverage ratio. The final ratio is the
arithmetic mean of a sequence of i.i.d. Bernoulli random variable realiza-
tions. The statistical programming language R' has been used to carry out
the calculations. For large matrices, i.e. many covariate combinations, one
step in the loop may take 30 seconds, using a computer with 4 Intel Xeon
processors (1.6GHz) and a total of 4GB of random access memory (RAM),
which was shared by several users, though. Repeating the simulation 7000
times led to long calculation runs of up to three days. Using a general pur-
pose programming language like C++ might considerably increase calculation
speed.

For the models without weight estimation, the confidence constant has to be
calculated only once. Hence, computing many SCBs costs little time, and it
was possible to carry out simulations with up to 20, 000 repetitions.

thttp:/ /www.r-project.org/
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setting success ratio

one-sided SCB | two-sided SCB

univariate equidistant unweighted 0.9493 0.9510
weighted 0.9507 0.9522

univariate non-equidist. | unweighted 0.9500 0.9513
weighted 0.9489 0.9520

bivariate unweighted 0.9495 0.9527
weighted 0.9519 0.9534

Table 4.1: Linear regression with known variances: Ratios of successes of coverage
of the real mean response function by SCBs or SCRs after 20,000 simulations for
different settings.

4.2 Results of the Simulations

4.2.1 Linear regression

In the linear regression settings as described in Chapter 2, we assume to
have known variances and normally distributed errors. That removes most
of the uncertainties. We expect our confidence bands to be corrupted only by
the approximation formulae for the two-sided case and bivariate regression,
because they are not exact.

Univariate regression

Regression data have been simulated in 22 = 4 different settings similar
to those in Section 2.7: with equidistant covariate levels and unevenly dis-
tributed covariate levels for weighted and unweighted linear regression. The
sample size was 50 in any of the combinations.

For each design, Table 4.1 shows the ratio of coverage of a two-sided and a
one-sided confidence band after 20, 000 repetitions.

The results support our theoretical results. The coverage ratio of the simu-
lations in the one-sided case is very close to 95%. The two-sided confidence
bands have coverage ratios in the interval [0.951,0.9523]. The error term in
the approximation formula obviously increases the coverage probability, but
the difference to 95% is small.

Bivariate regression

We have examined the heteroscedastic design as described in Section 2.7
and the same design with uniform variances. As could be expected, for the
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two-sided confidence band the coverage probability is higher than the nom-
inal coverage probability of 95%. Table 4.1 shows that the ratios are in
the interval [0.9527,0.9534]. Thus they are slightly worse than the two-sided
confidence bands in univariate regression, but nevertheless in an acceptable
range.

The one-sided SCB coverage is very close to 95%.

The coverage ratio of confidence bands in both one-dimensional and two-
dimensional settings is close to the theoretical coverage probability of 0.95.
The results show, that the impact of the error term in the approximation
formula is not very strong and increases the empirical coverage ratio after
20,000 repetitions only by 0.13 to 0.30 percentage points.

4.2.2 Heligman & Pollard model

In this more complex setting, we use the weighted least squares model with
estimated weights and the adjustments for GLM explained in Section 3.5.
The transformed responses are not normal, but even for sample sizes of only
2000 the errors are at least somewhat symmetrical as discussed on page 51.
The sample sizes nq, . . ., n,, in the simulations were always chosen to decrease
with the age variable, roughly following a Gompertz (or Heligman & Pollard)
survival function. The age 1 sample size n; will be used as an indicator of
the sample sizes.

Without temporal effects, two-sided

This is the univariate case. Simulations have been run with 7000 repetitions
for an age range of m = 80 and for 3? = 9 different parameter settings.
Three different age 1 sample sizes ny; = 30000, 400 and 50 were chosen. For
one chosen age 1 sample size, the other sample sizes ns, ..., n,, are the same
for all the parameter combinations. The results of these simulations can be
found in Table 4.2 and Figure 4.2. They are promising: the observed cover-
age probability after 7000 repetitions remain in the intervals [0.9500, 0.9593],
[0.9559, 0.9644] and [0.9516, 0.9593], respectively, and the coverage ratios are
not seriously affected by the choice of parameters.

As was pointed out in the discussion on the adequacy of the approach in sec-
tion 3.6, one of the major problems is the asymmetry of the errors. The fact
that the asymmetry for small sample sizes is actually a relevant consideration
is shown by the simulations with one-sided confidence bands.
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Figure 4.2: Univariate Heligman & Pollard model: Two-sided coverage ratios for
age 1 sample sizes ni; = 30000, n, = 400 and n; = 50.

Without temporal effects, one-sided

Having seen how good one-sided confidence bands perform in normal linear
regression, they could be expected to excel the two-sided confidence bands
in terms of accuracy of coverage.

They do for large sample sizes. For small sample sizes the coverage ratio
for lower confidence bands exceeds 95%, whereas the coverage for upper con-
fidence bands typically stays below 95%. Now one typical parameter com-
bination was chosen and simulations were carried out for different sample
size configurations with age 1 sample sizes n; = 50, 400, 5000, and 10000.
It is evident from Figure 4.3 that — as age 1 sample sizes increase — cover-
age ratios of upper and lower confidence bands both approach 95%. This
clearly shows the influence of the asymmetry for smaller sample sizes. As a
rough rule of thumb one can say that when the coverage probabilities of the
lower and upper confidence bands are very close, then the asymmetry will
be negligible. Samples with n; = 5000 are already a reliable basis for SCBs:
coverage by upper and lower confidence bands differs by only roughly 0.3
percentage points. Also, for the larger sample sizes, the one-sided confidence
bands themselves were providing a coverage very close to 95%.
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parameters success ratio

I} v | large sample size | small sample size | tiny sample size
110.04| -5.7 0.9503 0.9575 0.9539
2 -5.0 0.9563 0.9567 0.9564
3 -4.0 0.9583 0.9558 0.9593
410.07 | -5.7 0.9400 0.9544 0.9546
5 -5.0 0.9540 0.9597 0.9521
6 -4.0 0.9541 0.9524 0.9576
71013 | -5.7 0.9534 0.9518 0.9586
8 -5.0 0.9593 0.9528 0.9516
9 -4.0 0.9591 0.9505 0.9579

Table 4.2: Univariate Heligman & Pollard model: Ratios of coverage of the real
mean response function by two-sided SCBs after 7,000 simulations for different
parameter combinations.
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Figure 4.3: Univariate Heligman & Pollard model: Coverage of upper and lower
confidence bands for different sample sizes.
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With temporal effects

To obtain a realistic parameter setting for the simulations, data of Swedish
females of birth cohorts 1873-1892 at ages 61 to 90 have been fitted, obtaining
the parameters

vo=—43, v =—0.018, B=0.104. (4.1)

The values of the sample sizes n,; in these mortality data are usually very

[e0)
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o
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8 o 4 . - o g A
@ o o A A A
o a
@ _
()
>
(] <
2 7 m =0 e PB=0.074
@ y,=-0.01778 o p=0.104
1 O y,=—-0.03574 A [=0.164
(V]
03_ —
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-5 -4.3 -3.3 -5 -4.3 -3.3 -5 -4.3 -3.3

Yo

Figure 4.4: Bivariate Heligman & Pollard model: coverage success ratios of the
SCBs with large age 1 sample sizes of about n; = 30000 at different parameters
Yo, ¥1 and B after 7000 simulations.

large, ranging from a few thousands at old ages to over 30,000 at the real age
61 (which in our model is age 1). This means that the normal approximation
of the binomial variable D, , will be very good. We have set up the alghorithm
as described on page 57 for 27 different parameter combinations around those
given in (4.1), and sample sizes similar to the real Swedish female sample
sizes.

For all parameter settings the final ratio after 7000 simulations is in the
interval [0.9531,0.9633]. See Figure 4.4 for a representation of the different
parameter combinations.

Even for very small age 1 sample sizes, the coverage results are surprisingly
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Figure 4.5: Bivariate Heligman & Pollard model: coverage success ratios of the
SCBs with small age 1 sample sizes of n; = 25 and different parameters after 7000
simulations.

good. The ratios range in [0.9524,0.9616] (see Figure 4.5).

The final ratios of all the simulation results represented in the two figures
can be found in Appendix F.

Even if the coverage ratios are acceptable, outcomes are mixed due to the
dicreteness and asymmetry of the distribution.

4.2.3 Summary

Simulation results are very good in both univariate and bivariate normal
linear regression. For the Heligman & Pollard model, the lack of normality
leads to mixed results, especially for small sample sizes. However, coverage
ratios were always relatively close to the nominal coverage probability of 95%,
exceeding 96% only in few cases.



Appendix A

Maximum Likelihood
Estimator in Linear Regression

The Y; in (2.1) follow a normal distribution with mean fy+ f;x; and variance
o?. Their likelihood function is

m

L(B.z) =[] F.
i=1
and with ) (Y.~ fo— i)’
— X — Po— Pidy
fYi) = 5o, P { 57 }

the log-likelihood function is

(B.z) = Zln(f(Y;))

= —mn(V2r0) = ) L ﬁ;a—Q 51%)2.

i=1
To get the maximum likelihood estimator (MLE) we need to maximise this

equation. That is the same as minimising

m

> (Y= Bo — fri)’,

=1

which is the definition of the least squares estimation procedure. Hence, the
least squares estimator is equivalent to the MLE.
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We take derivatives with respect to 3 and [3;, respectively, to get the maxi-
mum likelihood (ML) equations

Z(Yz‘ —Bo—Bx;) = 0 and
i=1

Z(Yi — Bo — prvi)x; = 0,

i=1

of which the first can be solved for 3y, and the maximum likelihood estimator
for 3y is

Bo=m"" Z(Yz — Brai) = Yo — B1Zm.
i=1
Replacing (3, by B(] in the second equation yields

m

i=1

= 5 Z[x@m — 2] — Z[axiffm — z;Yy].

i=1 i=1

This equation is solved for 31, and the maximum likelihood estimator for (;
is

>oilwiYim — 2Y]]

In matrix notation this can be written

b=

B=(X"X)"'X"Y.

We know that
1 T
EY =0 | : | +6:| ¢ | =XB.
1 T
Hence, the estimates are unbiased, because they are linear functions of Y and

because of the linearity property of the expectation for independent random
variables:

E3 = (X"X) 'X"EY = (X"X)'XTX3 = 3. (A1)



Appendix B
M is in One Plane

We want to show that every point in M lies in the plane spanned by T'(x;)
and T"(z1). Note that for every x € X, T'(x) is a linear combination of the
vectors a; and a, from Remark 1, because

) ey zTay
“ @I T @I @]

In particular, for x = x; and some scalars d; and 9d,:

T(x)

(B.1)

T(.’El) = (510/1 + 52&2.

The derivative of T' at x; is orthogonal to T'(z;) and is also a linear combi-
nation of @; and as, because by differentiation of (B.1) it has the following
representation:

T'(x1) = al% <W(1W>

o (i)
I PRNTTTES]]

(T (1), T' (1))

is an orthogonal set of vectors in the vector space spanned by a; and as,
and any vector therein can be written as a linear combination of T'(x;) and
T'(z,). That applies to all vectors T'(z), x € X, and therefore to all the
vectors in M.

T=x1

Hence,
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Appendix C

Likelihood Construction for

Binomial Generalised Linear
Models

To calculate Fisher information matrices in generalised linear models for bino-
mial data, McCullagh and Nelder (McCullagh and Nelder, 1989) follow a gen-
eral approach, valid for any link function g and any design (x;,n;), i = 1, ..., m,
where n; samples are taken at the covariate combination x;. Hence, we have
a design matrix

X = (Iij)izl,...,m,jzo,...,d

The total number of samples is n = > n;. The responses d; are realisations
of random variables D; ~ B(n;, ;) following a binomial distribution.
Let us consider a binomial GLM

9(7Tz') = ib‘;fpﬁ =N,

where g is the link function, m;n; is the mean of D, and B = (f31,..., #4) are the
parameters we wish to estimate. The binomial parameter 7; can be written

™ = gil(mzrﬁ);

!'is the inverse of the link function g. The binomial probability

where ¢~

function is
n;

Consequently, the likelihood function is

L(B,dy,...,dn) = H (Z’) Wfi(l — ’ﬂ'i)ni—di’ (C.1)
i=1 v
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leading to a log-likelihood function

(B,di,....d,) = i[(gi)+diln7ri+(ni—di)ln(1—7r1-)}

i=1

= Z <nz> + |:’I”Lz 111(1 _7Ti) +dz In i :| .
d; i1 1 — T

i=1 t

As the first term in above equation is constant, we can leave it aside and
define

m

l(ﬁ,dl,...,dm) :Z |:7’Lzln(1—7TZ)+dZ1n1 i :| , (02)

— T
i=1 b

which we will refer to as the log-likelihood function — in spite of the missing
constant.
The information matrix turns out to be
I(B)=X"WX, (C.3)
a product of the design matrices and a m x m weight matrix
w1y
W = . (C4)

W

For the derivation of the information matrix and information on the struc-
ture of the w;, see below.

Binary GLM Information Matrix

The derivatives with respect to m; of the log-likelihhood function [ of a binary
GLM (see (C.2)) are written as follows

ol . di—nim
671'1' N 7TZ(1 —7TZ')

The chain rule yields
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ol = 0 5
o5 ;aﬁr [niln(l—m)—kdilnl_m
B i=1 aﬂ-i aﬁ'r
= dz — N;T; 87@
I Lz‘(l - Wi)} 9B, (©5)

Now we can also write Om; /03, as a product using 7;’s dependency on the
linear predictor n; = x! 3.

or i dm i 6772 dm i

_ dmi om _dmi C.6
05, ~ dn 05, dn " (C56)
By inserting this into formula (C.5), we obtain
ol - dz — N;T; d7TZ'
b e | P

To get the information matrix we must differentiate a second time, now with
respect to [;.

821 zm: 0 d1 — N;T; 87&'
aﬂraﬂs B i—1 aﬁs 7rz(1 - ﬂ—i) 6/81"
B Xm:g _g_,gzﬂ—i(l — 7Tz') — (dz — nlm)g—;:[m(l — 71'1)] - 87@
4 8271'1' d1 — N;T;
03,06, mi(1—m;)
Since ED; = n;m; the differences d; — n;m; have an expected value of 0, and
the elements of the information matrix can be written as

821 . = 1 . 87@ . 87@
aﬁraﬁs N i—1 7ri(1 - 7ri) aﬁr aﬁs’
which — using (C.6) — yields

2l 1 fom\*
96,08,  ~m(l—m) \ay) "

N J/
-~

=:w;

—-E

m

—-E
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So in matrix notation we can write
I(B)= X"WX.

In the case of the canonical logit link function

87&' 0 _
= 3 1(771‘)
on; on;
- % (s)
de \1+e€"/|,_,.
eni
(T em)?’
and hence
6277i eni
T A —m A et (It em)?
because

eni

7TZ(1 - 7Tz') = m

71



Appendix D

An Approximation of the

Hazard Function in the
Heligman & Pollard Model

The definition of the hazard via the probability density functions is

We know that

and hence

_ [
Mo) =T F@y
d _ f=@)

r+1

—/Mh(t)dt — (- F())

- ()

Now we can express the probability to die 7, in terms of the hazard.

Px<X<z+1)
P(X > x)
F(x+1)— F(x)
1— F(x)

- 1_exp{_/j+1 h(t) dt}

~ 1—exp{—h(z)dt}.

Ty —
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Then with
v+Bx erthe
1 —exp(—In(l+ 7)) = T ohe

it follows that an approximation for the Heligman & Pollard hazard is

h(z;a, B) ~ In(1 + a - ). (D.1)



Appendix E
0-Method

The following theorem is commonly known as the 6-method. I use the version
presented in (Liese, 2003).

Theorem E.1 (§-method). Let Xy, Xs,... be i.i.d. random variables satis-
fying EX? < oc, and p = EX,,0% = VX].

We set X,, == %ZLI X;. Let 1 be a real function continuously differentiable
in a neighbourhood of p such that ¢’ (1) # 0.

Then /n(1(X,) — (1)) converges in distribution to a normal random vari-

able with mean 0 and variance (¢'(11))*0?, in formulae

LVn((X,) — (1) =X No ()2 (E.1)

In order to apply this result to the transformations we derive a corollary
specialised on a scaled binomial random variable.

Corollary E.2. Let Q@ = n™'X with X ~ B(n,7) be a scaled binomial
random variable with parameters p = m € [0,1] and n € N, which means
pg =7, 04. Let v be defined as in E.1 with Ey/n((Q) — ¥ (ug))* < oo.
Then

LOV((Q) = ¥(1e))) = Now(wros (E2)
and the following approximation holds
Vi (Q) = (¥ (kq))*0d- (E.3)

Proof. Let X1, Xy,... be i.i.d. Bernoulli random variables with success prob-
ability 1 = 7 and variance 02 = (1 — m)7. Then Q = X, = > | X,.
We now apply Theorem E.1, which gives us exactly (E.2). According to our
assumptions, Ev/n(1(Q) — ¥(ug))? < oo, and hence the second moment of

74



APPENDIX E. 6-METHOD 5

Vn(Y(Q) —1(1g)) converges to the one of the limit distribution (see van der
Vaart, 2000). So does the variance:

nVi(Q) = VWi (Q) — ¥ug) == (¢'(n)’0”.
For large n we can use the approximation
nVih(Q) = (¥'(1)*0”,

and with 0® = no, we obtain (E.3).
U

To get the variance of the transformed response in (3.15) we simply choose

$(y) = logit(y) = In (IL) |

-y



Appendix F

Table of success ratios

Parameter combinations success ratio
Yo Y 0 | large sample size | small sample size
-5 0.9581 0.9524
-4.3 0.074 0.9591 0.9561
-3.3 0.9591 0.9567
-5 0.9604 0.9539
-4.3 | 0.00000 0.104 0.9531 0.9547
-3.3 0.9574 0.9527
-5 0.9570 0.9581
-4.3 0.164 0.9576 0.9579
-3.3 0.9577 0.9569
-5 0.9576 0.9611
-4.3 0.074 0.9576 0.9596
-3.3 0.9539 0.9590
-5 0.9590 0.9596
-4.3 | -0.01778 0.104 0.9556 0.9600
-3.3 0.9591 0.9533
-5 0.9591 0.9546
-4.3 0.164 0.9594 0.9577
-3.3 0.9594 0.9599

Table F.1: Ratios of coverage of the real mean response function after 7000
simulations for different parameter combinations and large and small age 1 sample
sizes (also see Figures 4.4 and 4.5).

To be continued overleaf...
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Parameter combinations success ratio
Yo o1 B | large sample size | small sample size
) 0.9596 0.9581
-4.3 0.074 0.9581 0.9569
-3.3 0.9541 0.9584
-5 0.9593 0.9603
-4.3 | -0.03574 0.104 0.9596 0.9593
-3.3 0.9603 0.9593
) 0.9596 0.9611
-4.3 0.164 0.9599 0.9593
-3.3 0.9533 0.9616
Table F.2: ...continued. Ratios of coverage of the real mean response function

after 7000 simulations for different parameter combinations and large and small
age 1 sample sizes (also see Figures 4.4 and 4.5)
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